Dans ce devoir , toute utilisation de nouveautés du programme de première est à proscrire ! (ou alors vous devez être capables de les démontrer !)

Exercice 1:

Dans un repère orthonormé du plan, on considère les points :

R(-9;-1) E(-6;-6) C(9;3) T(6;8) G(15;-7)

- 1) Faire une figure
- 2) Démontrer que RECT est un parallélogramme
- 3) Démontrer que le triangle RET est un triangle rectangle
- 4) Que peut-on en déduire pour la nature précise du parallélogramme RECT ?
- 5) Calculer l'aire de RECT
- 6) En utilisant le fait que le triangle RET est un triangle rectangle, déterminer, par le calcul, les coordonnées du centre du cercle circonscrit à RET (c'est à dire du cercle qui passe par les points R,E,T)
- 7) Les points T,C,G sont-ils alignés ? Justifier
- 8) Soit H le pied de la hauteur issue de R dans le triangle RET. Calculer RH.

Exercice 2:

Soit f la fonction définie sur \mathbb{R} par $f(x) = (x + 2)^2 - 16$

- 1) Après avoir dressé le tableau de valeurs de f(x) sur [-5;2] avec un pas de 1, tracer la courbe représentative de f notée (C_f) dans un repère que l'on choisira judicieusement (on ne prendra pas forcément un repère orthonormé).
- 2) Dans le même repère, tracer la courbe représentative de la fonction g définie sur \mathbb{R} par g(x) = 8 x 16
- 3) Résoudre graphiquement l'équation f(x) = g(x)
- 4) Développer et réduire f(x)
- 5) Factoriser f(x)
- 6) Utiliser une des trois formes de f(x) pour déterminer algébriquement (sur ℝ) :
- a) l'image de 0 par f
- b) f(2)
- c) le ou les antécédents de 0 par f (s'ils existent)
- d) les solutions de l'équation f(x) = -16
- e) les solutions de l'inéquation f(x) > 9
- f) les solutions de l'inéquation $\frac{f(x)}{g(x)} \le 0$

Exercice 3:

Dans cet exercice, on donnera les résultats des probabilités sous la forme de fractions irréductibles.

Un club propose deux types d'activités : le sport en compétition et le sport en loisir.

Des tarifs différents sont proposés selon que l'on est un adulte (plus de 18 ans) ou jeune.

Le nombre d'adhérents du club est 900 et on sait que :

- 567 ont choisi le sport loisir et parmi eux 234 sont adultes.
- 270 jeunes ont choisi la compétition.
- 1) Recopier et compléter le tableau ci-dessous :

	Sport-loisir	Compétition	Total
Adultes			
Jeunes			
Total			

- 2) On choisit un adhérent du club et on appelle C l'événement : « l'adhérent a choisi la compétition » et A l'événement : « l'adhérent est un adulte »
- a) Calculer la probabilité de l'événement A et la probabilité de l'événement C.
- b) Décrire par une phrase les événements suivants : \bar{A} , A \cap C, A U C
- c) Calculer la probabilité de chacun des événements de la question précédente.
- 3) On choisit un adhérent parmi les adultes. Quelle est la probabilité (que l'on notera p1) qu'il ait choisi la compétition ?
- 4) On choisit un adhérent parmi ceux qui ont choisi la compétition. Quelle est la probabilité (que l'on nommera p2) qu'il s'agisse d'un adulte ?